Simulation, integration and assembly of pilot scale membrane reactors

Leonardo Roses

Pd membrane workshop
Petten, 20-21 November 2014

DEMcamer is supported by the European Union’s Seventh Framework Programme under grant agreement Nº NMP3-LA-2011-262840

ReforCell is supported by the European Union’s Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement Nº 278997

Then present document reflects only the author’s views and the Union is not liable for any use that may be made of the information contained therein.
Why Hydrogen?

- **HGS:**
 - Hydrogen Generation Systems
 - HGSV: 5 Nm³/h
 - HGSL: 50 Nm³/h
 - HGSC: 100 Nm³/h

- **GPS:**
 - Gas Purification Systems
Outlook

- Autothermal Reforming Membrane Reactor (ReforCELL)
- Water Gas Shift Membrane Reactor (DEMCAMER)
 - System layout
 - Reactor specs and description
 - Simulation & Design
 - Integration
- Economics
Autothermal Reforming Membrane Reactor
(ReforCELL)
ATR-MR System layout

ATR-MR (600°C) Retentate

H₂

HX-2 air+H₂O reaction

CMP NG

Vacuum

Anode

PEM Fuel Cell

Cathode

P-3

HX-8 (Recov)

Cooling circuit

HX-1 Burner

HX-7

HX-0 Sep

HX-4 HX-6 Vac.P.

P-1

Airbrn

Air ÅTR

CMP air

H₂O reaction

(H2O reaction)

ATR-MR

Retentate

Cooling circuit

Air cath

Anode

PEM Fuel Cell

Cathode

P-3

HX-8 (Recov)

Cooling circuit

HX-1 Burner

HX-7

HX-0 Sep

HX-4 HX-6 Vac.P.

P-1

Airbrn

Air ÅTR

CMP air

H₂O reaction

(H2O reaction)
Specifications:

- Maximum H_2 output 5 Nm3/h
- Nominal CHP operation \approx 3.7 Nm3/h
- Partial loads 30%
- Maximum temperature 600 $^\circ$C
- Fluidized bed
- 7 bar$_g$ reaction
- 300 mbar$_a$ hydrogen
Challenges:

- Fluidization regime !!
 - > minimum fluidization (u_{mf})
 - < terminal velocity (u_t)
- Hotspots (oxidation at inlet section)
- Adequate back-mixing
- Slugging
- Kinetic limitations
- Membrane area
- Manifolding
- Sealing
Challenges:

- Adequate back-mixing

Aspect ratio membrane section (@u_0/u_{mf}=8)

- Pitch = L/d_t
Challenges:

- Load modulation
Fluidization performance

<table>
<thead>
<tr>
<th>Result</th>
<th>Max.</th>
<th>CHP</th>
<th>CHP @40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen production</td>
<td>Nm³/h</td>
<td>5.0</td>
<td>3.7</td>
</tr>
<tr>
<td>Fluidization regime at ATR inlet (z=0)</td>
<td>u₀/uₘₙ</td>
<td>7.0</td>
<td>5.2</td>
</tr>
<tr>
<td>Fluidization regime at inlet to membrane section (z=1)</td>
<td>u₁/uₘₙ</td>
<td>9.8</td>
<td>7.3</td>
</tr>
<tr>
<td>Actual to terminal velocity at ATR inlet (z=0)</td>
<td>u₀/uₜ</td>
<td>0.88</td>
<td>0.75</td>
</tr>
<tr>
<td>Actual to terminal velocity at inlet to membrane section (z=1)</td>
<td>u₁/uₜ</td>
<td>0.73</td>
<td>0.62</td>
</tr>
<tr>
<td>Axial slugging at inlet to membrane section (z=1)</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Axial slugging within membrane section (z=1-2)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Bed level rise</td>
<td>mm</td>
<td>173</td>
<td>132</td>
</tr>
</tbody>
</table>
Considerations:

- **Geometry**
 - Simple assembly
 - Maintenance
 - Possibility to change single membranes vs. whole assembly

- **Membrane sealing:**
 - Welding, brazing, unions?

- **Particle size**
 - Particle separation

- **Attrition problems?**
 - Membranes shielded or not

- **1 membrane fails?**
 - Single outlet => Shutdown
 - Multiple independent outlets => close only failing section
Considerations:

• Controls
 o Fast response
 o Good accuracy in BOP & instrumentation

• Transportation

• Weather protection
 o Indoors ? Outdoors ?

• Startup/shutdowns
 o Frequent shutdown vs. standby mode
Water Gas Shift Membrane Reactor
(DEMCAMER)
Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen output</td>
<td>Nm³/h</td>
<td>5</td>
</tr>
<tr>
<td>Hydrogen recovery factor*</td>
<td>%</td>
<td>90</td>
</tr>
<tr>
<td>CO conversion</td>
<td>%</td>
<td>95</td>
</tr>
<tr>
<td>Hydrogen purity</td>
<td>%</td>
<td>99.9 %</td>
</tr>
<tr>
<td>Feed pressure</td>
<td>bar</td>
<td>6</td>
</tr>
<tr>
<td>Inlet temp</td>
<td>°C</td>
<td>>300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feed comp.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH4</td>
<td>3.8</td>
</tr>
<tr>
<td>H2</td>
<td>44.8</td>
</tr>
<tr>
<td>CO</td>
<td>9.2</td>
</tr>
<tr>
<td>CO₂</td>
<td>4.7</td>
</tr>
<tr>
<td>H₂O</td>
<td>34.7</td>
</tr>
<tr>
<td>N₂</td>
<td>2.8</td>
</tr>
</tbody>
</table>

* \[HRF = \frac{F_{H_2,perm}}{F_{H_2,feed} + F_{CO,feed}} \]
• Packed bed 1D model:

 – Effectiveness factor. Weisz and Hicks, (1962)
 – Concentration polarization coefficient. Cavarella, Barbieri, Drioli (2009)
 – Convective heat transfer terms: Li & Finayson (1977) ; Kern (1997)
• Packed bed 1D model:

CO conversion and H_2 Recovery as a function of feed temperature. Sweep factor 0.06, membrane area 0.152 m2.

H_2 Recovery as a function of sweep factor for different membrane area. Feed temperature 330°C.
- Packed bed 1D model: Temperature and species profiles

Molar flow rate profiles on reaction side along the reactor length. Membrane area 0.179 m² (13 membrane tubes), sweep factor 0.12, Feed temperature 360 °C.

Temperatures profiles, on reaction side and permeation side, along the reactor length. Membrane area 0.179 m² (13 membrane tubes), sweep factor 0.12, feed temperature 360 °C.
Response to feed flow

Outlet temperature of retentate and permeate stream as a function of sweep factor. Feed molar flow rate 7.6 mol/min, feed temperatures 360 °C.

H₂ Recovery and H₂ permeate molar flow rate as a function of feed molar flow rate. Sweep molar flow rate 0.93 mol/min, feed temperatures 360 °C.
Design:

- Packed bed reactor
- Design H_2 output 5 Nm3/h
- Design pressure 8.5 bar$_g$
- Sweep flow (steam), 1.0 kg/h counter current
- < 0.2 m2 membrane area
WGS-MR
Reactor simulation & design
Temperature monitoring:

- 6 TC’s:
 - 3 level TC reading
 - 2 radius
- Removable sheath. Open-end type.
- Replaceable
Membrane technology:
• TECNALIA, membrane deposition
• RAUSCHERT, supports
• TECNALIA / TUE, sealing

Catalyst technology:
• HYBRID CATALYSIS
- Assembly
- Suitable for outdoors
Economics
Economics

The road towards exploitation

Alternative market vs. Mainstream

- Opportunities?
 - Dehydrogenation
 - High value chemicals
 - H₂ upgrading

- H₂ production from NG reforming
 - Compete with well established and economical solutions with H₂ delivered pressurized (PSA).
 - PSA low installation costs. Durability »15 years
 - Membranes < 500 €/(Nm³/h) for ~15yr ??
The road towards exploitation

VS.