Design and test results of Catalytic Membrane Reactors for Steam Methane Reforming

Marija Saric, Marcel den Exter, Anatolie Motelica, Emma Palo, Gaetano Iaquaniello, Keren Shabtai, Antonio Ricca, Vincenzo Palma, Raf Roelant, David Wails, Andrew Smith, Frans van Berkel

Petten, 29th of April 2015
Partners in WP1a

Emma Palo, Gaetano Iaquaniello

Raf Roelant

Antonio Ricca, Vincenzo Palma

Keren Shabtai

David Wails, Andrew Smith

Marija Saric, Marcel den Exter, Anatolie Motelica, Frans van Berkel
Steam Methane reforming

- Overview of C1-C3 valorisation process studies in Carena:

 \[m = \frac{(H_2-CO_2)/(CO+CO_2)}{} = 2.1 \]

Objective: Scale-up and demonstration of steam methane reforming membrane reactor concept (\(H_2\)-production level: 2-20 Nm\(^3\)/hr)
Enhanced steam methane reforming

Hydrogen production:

- Natural gas is significant feedstock
- H_2-use significant for ammonia, refining and methanol

H_2 production plant (Praxair)
Enhanced steam methane reforming

- Steam Methane Reforming (SMR): Reliable process with economic benefit

- Problem: highly endothermic and equilibrium limited:
 1. High methane conversion at high temperature (typically 800-850°C), thus high energy consumption.

 \[
 \text{Steam reforming reaction, strongly endothermic} \\
 \Delta H^{\circ}_{25^\circ C} = +206 \text{ kJ/mol}
 \]

 \[
 \text{Water gas shift reaction, mildly exothermic} \\
 \Delta H^{\circ}_{25^\circ C} = -41 \text{ kJ/mol}
 \]

 2. SR-catalyst is placed in tubes and heat is supplied by NG-burners:
 - Tubes experience 100-150°C higher temperatures
 - Requires expensive high alloy steel (high Cr and Ni content (25-35%))

 LOWER OPERATING TEMPERATURE!!!!
Membrane Reactor concept: selective removal of a reaction product

Equilibrium conversion shift \rightarrow higher CH$_4$-conversion by H$_2$-removal

$$\text{CH}_4 + 2\text{H}_2\text{O} \rightarrow \text{CO}_2 + 4\text{H}_2$$

Membrane-catalyst integration:

- Higher reactant conversion at the same temperature of conventional reactor
- Same reactant conversion at lower temperature (500-600°C)

About 250°C of temperature decrease for iso-conversion

Effect more pronounced at higher pressure
Enhanced steam methane reforming

natural gas (secondary)

air

combustion

heat transport

catalyst

reforming

separation

carbon

methane

water

hydrogen

H₂O

methane

CH₄

hydrogen

H₂

water

H₂O
Enhanced steam methane reforming

Single tube membrane reactor:
- Membrane: 3.8 μm Pd/αAl₂O₃, membrane area: 155 cm²
- SR-catalyst: Ni-based catalyst
- $T_{op} = 530-590 \, ^°C$
- $P_f = 25-42 \, \text{bara}$, feed: CH₄/H₂O = 1/3,
 co-current, N₂ sweep

Separation enhanced SMR shown

Scale-up: Translate single tube (TRL4) → multi tube reactor design (TRL5)
Enhanced steam methane reforming

Multi-tube reactor design aspects:

<table>
<thead>
<tr>
<th>Reactor scale-up aspects</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost aspects:</td>
<td>- Efficient usage of high pressure vessel volume</td>
</tr>
<tr>
<td>- Reactor cost</td>
<td>- 1500 euro/m² (High volume manufacturing)</td>
</tr>
<tr>
<td>- Membrane cost</td>
<td></td>
</tr>
<tr>
<td>Integration aspects</td>
<td>- Efficient distribution of heat to catalyst and membranes</td>
</tr>
<tr>
<td></td>
<td>- Efficient combination reaction/separation</td>
</tr>
<tr>
<td>Integration in process</td>
<td></td>
</tr>
<tr>
<td>Operational aspects</td>
<td>- H₂-production level (Small to large scale)</td>
</tr>
<tr>
<td></td>
<td>- Methane conversion level</td>
</tr>
<tr>
<td></td>
<td>- Operation pressure/temperature</td>
</tr>
<tr>
<td></td>
<td>- Maintenance</td>
</tr>
<tr>
<td></td>
<td>- Safety</td>
</tr>
</tbody>
</table>
Membrane reactor concept

The role of vessel cost

Vessel diameter = 3 m
Effective height = 10 m
(Total height = 12 m)
$D_{\text{mem}} = 14 \text{mm}$
Membrane cost = 1500 €/m²
50 bar, T=500 – 650°C

2035 m² membranes in a vessel
membrane cost = 3.05 M€
vessel cost = 5.73 M €
Membrane reactor concept

The role of vessel cost

<table>
<thead>
<tr>
<th>Pitch</th>
<th>Closest packing</th>
<th>Relative contribution of cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Membrane</td>
</tr>
<tr>
<td>D = 2</td>
<td>655 tubes per m²</td>
<td>1</td>
</tr>
<tr>
<td>D = 1</td>
<td>1473 tubes per m²</td>
<td>1</td>
</tr>
<tr>
<td>D = 1</td>
<td>368 tubes per m²</td>
<td>1</td>
</tr>
</tbody>
</table>

Physical separation membrane from catalyst/heat section

Arbitrary diameter indicating impact of membrane-catalyst-heat integration
Heat transfer coefficient = 150 W/m²K
Average $\Delta T = 200$ K

H_2 prod = 259 mol/s/m³

WHSV= 5.85 kg$_{CH_4}$/hr/kg$_{cat}$

Membrane area, heated area and catalyst volume for production of 1 Nm³ H_2/hr

Integration of membrane/catalyst/heat: How much volume/area do you need?

Physical separation membrane and catalyst/heat section possible
Combination membrane and catalyst/heat section in steam reforming process in two configurations:

- **In-situ** within one reactor vessel (Integrated Concept)
- **In-series** coupling of membrane and heat/catalyst module (Non-integrated Concept)
Integrated membrane reactor concept

Integration of membrane/catalyst/heat:

T-profile from burner to catalyst to membrane

Compact design

Mass transport catalyst → membrane

Patent no. WO2012/112046 A1
Integrated membrane reactor concept

Efficient combination of reaction and separation:
Methane conversion and baffles

Mass transport catalyst → membrane

Feed pressure: 30 bar S/C=3
Permeate pressure: 5.5 bar

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Methane conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5-steps</td>
</tr>
<tr>
<td>650</td>
<td>64.0%</td>
</tr>
<tr>
<td>700</td>
<td>80.77%</td>
</tr>
<tr>
<td>750</td>
<td>93.05%</td>
</tr>
<tr>
<td>800</td>
<td>98.4%</td>
</tr>
</tbody>
</table>
Integrated membrane reactor concept

Construction of integrated membrane reactor:
Certification problem HP vessel: $P_{\text{operation}} < 7$ bar
SR-enhancement demonstrated

- 1.6 Nm³/hr hydrogen for 55% methane conversion at 550°C
- H₂-purity 95% → membrane selectivity improvement required
- Long term testing terminated due to burner failure
Integrated membrane reactor concept

Summary:

<table>
<thead>
<tr>
<th>Reactor scale-up aspects</th>
<th>Carena impact</th>
<th>Next step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated membrane reactor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost aspects:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Reactor cost</td>
<td>Membrane area per vessel volume optimized</td>
<td>Reactor < 5000 euro/m²</td>
</tr>
<tr>
<td>- Membrane cost</td>
<td>Scale-up: 1500 euro/m²</td>
<td></td>
</tr>
<tr>
<td>Integration aspects:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Heat distribution to catalyst and membranes</td>
<td>Optimized radial T-profile</td>
<td>Homogeneous T for membranes</td>
</tr>
<tr>
<td>- reaction/separation combination</td>
<td>5 baffles</td>
<td>Multi-baffle</td>
</tr>
<tr>
<td>- Integration in process</td>
<td>Heat supply by gas turbine</td>
<td>Demonstration heat supply by GT</td>
</tr>
<tr>
<td>Operational aspects:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Operation P/T</td>
<td>7 bar demonstrated</td>
<td>High P (40 bar)</td>
</tr>
<tr>
<td>- H₂-production level</td>
<td>1.6 Nm³/hr</td>
<td>> 200 Nm³/hr</td>
</tr>
<tr>
<td>- H₂-purity</td>
<td>95%</td>
<td>> 99%</td>
</tr>
<tr>
<td>- Methane conversion level</td>
<td>54%</td>
<td>> 95%</td>
</tr>
<tr>
<td>- Lifetime</td>
<td>800 hours</td>
<td>> 40,000 hours</td>
</tr>
<tr>
<td>- Feed quality</td>
<td>Pure methane</td>
<td>NG</td>
</tr>
<tr>
<td>- Maintenance</td>
<td>Not addressed</td>
<td>Maintenance plan</td>
</tr>
</tbody>
</table>
Non integrated membrane reactor concept

2 STAGE OF REFORMING REACTION AND MEMBRANE SEPARATION ORGANIZED IN AN OPEN ARCHITECTURE
Non integrated membrane reactor concept
An overall feed conversion of 57.3% was achieved at 610°C, about 26% higher than what can be achieved in a conventional reformer at the same temperature.

Coupling two reforming stage and an intermediate membrane separation module allows to overcome equilibrium conversion. The RMM architecture performed a methane conversion up to 10-12% higher than equilibrium values.
Non integrated membrane reactor concept

Summary:

<table>
<thead>
<tr>
<th>Reactor scale-up aspects</th>
<th>Current status</th>
<th>Next step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated membrane reactor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cost aspects:
- Reactor cost
- Membrane cost

- Membrane area per vessel volume optimized
- Scale-up: 1500 euro/m²
- Reactor and membrane < 4000 euro/m²

Integration aspects:
- Heat distribution to catalyst and membranes
- Reaction/separation combination
- Integration in process

- Heat supply in catalyst section, lower T_{mem}
- R-M-R configuration
- Heat supply by gas turbine
- No further optimisation
- Multi (R-M), fluiddynamic optimization, sweep gas
- Demonstration heat supply by GT as well as other thermal medium

Operational aspects:
- Operation P/T
- H_2-production level
- H_2-purity
- Methane conversion level
- Lifetime
- Feed quality
- Maintenance

- 10 barg
- 20 Nm³/hr
- 99,5%
- 54%
- 2,000 hours
- NG
- Modular approach
- High P (40 bar)
- > 10,000 Nm³/hr
- > 99,99%
- > 95%
- > 15,000 hours
- -
- -