Long term testing of Pd-membranes under methane steam reforming conditions

Workshop Scale-up Pd-membrane technology, Petten
20th of November 2014
Content

• Introduction

• Aim and approach

• Results of membrane long term testing:
 – Pre test characterization
 – Long term behavior
 – Post test characterization
 – Comparison pre test vs. post test

• Conclusion
Introduction

- **Development of a steam methane reform membrane reactor at ECN:**
 - **Application:** Hydrogen generation and syngas tuning for methanol synthesis
 - **Advantage:** Lowering of methane steam reforming temperature:
 - Use of cheaper alloy steel
 - Reduce underfiring
 - Higher overall process efficiency
 - Lower of CO₂ emissions
 - Reduced dependence on the cost of natural gas
 - Flexibility in using different heating fluids
 - **Status:** Construction and first phase test on integrated multi-tube membrane reactor
 - Hydrogen production capacity of 5 Nm³/h
 - **Important hurdle:** Stable high hydrogen selectivity during long term operation
Introduction

- **H₂-purity and required H₂/N₂-permselectivity:**

 Schematic view on hydrogen purity and required permselectivity:

 The darker the color the higher the required selectivity

 - Pressure non hydrogen species in syngas
 - Increasing hydrogen pressure in syngas
Introduction

- **H₂-purity and required H₂/N₂-permselectivity:**
 - Schematic view on hydrogen purity and required permselectivity:

 - **H₂-purity**
 - 99.999
 - 99.99
 - 99.9
 - 99.0

 - **H₂/N₂-Permselectivity**
 - > 100,000
 - > 100,000

 - **H₂-generation for protecting gas, ammonia:**
 - SMR-process

 - **H₂-generation/separation for H₂-fuel:**
 - SMR-process

 - **H₂-generation for pre-combustion CCS NGCC**

 - **H₂-generation for pre-combustion CCS IGCC**

- **Increasing hydrogen pressure in syngas**

- **Pressure non hydrogen species in syngas**

- **ECN-membranes:**
 - State-of-the-art

- **Ultra pure H₂**
Aim and approach

• **Aim:**
 - Long term behavior of membranes under SMR-conditions:
 - Permeance behaviour vs. lifetime
 - Selectivity behaviour vs. life time

• **Approach:**
 – Comparison thin (1.5-2 μm) and thick (4-5 μm) membrane:
 – Membrane pre-test: leakage characterisation
 – Membrane long term test under SMR-condition
 – Post test leakage characterisation:
 – in-situ (in long term test facility) and ex-situ (Rising water test, He- vs. N₂-leakage)
Membrane properties

- **Al$_2$O$_3$ support**
- **Thin Pd-layer membrane**
 - Membrane properties:
 - Length is 444 mm; diameter is 14 mm; membrane area is \(~0.02\) m2
 - Pd-layer thickness: 1.6 micron
 - Sealing with compression seals (ECN)

- **Thick Pd-layer membrane**
 - Membrane properties(B69Pd25):
 - Length is 364 mm; diameter is 14 mm; membrane area is \(~0.015\) m2
 - Pd-layer thickness: 4-5 micron
 - Sealing with compression seals (ECN)
Pre test membrane characterisation

- **N₂-leak rate characterisation pre-test:**

 Leak rate: \(\frac{J}{dP} = a + b \cdot P_{av} \)

 Y-axis intersection: Knudsen-flow = \(a \cdot dP \)

 Slope: Viscous flow = \(b \cdot P_{av} \cdot dP \)

![Graph showing leak rate vs. P average for thin and thick Pd-layer](image)

- Thick Pd-layer results in significant lower Knudsen flow
- Slope reduction by a factor 2
- Y-axis intersection by a factor of 8
Long term behaviour under SMR condition

- Long term test conditions (H₂-purity and permeance):

 Temperature: 450°C

 Feed-pressure: 27 bar

 Feed composition in vol % and partial pressure:

 - CO₂: 4.1
 - CH₄: 18.6
 - H₂O: 60.2
 - H₂: 17.0
 - CO: 0.2

 Permeate pressure: 2 bar
 No sweep (pure hydrogen)
 So fairly low driving force
Long term behaviour under SMR condition

- Membrane performance (H_2-purity and permeance):

Thin Pd-layer

- H_2-permeance in mol/m2*Pa*time
- H_2 purity in %

Thick Pd-layer

- H_2-permeance in mol/m2*Pa*time
- H_2 purity in %

S/C=3 (eq: 450°C); low flow pH_2(ret) $>$ pH_2(perm)

S/C=3 (eq: 500°C); low flow pH_2(ret) $=$ pH_2(perm)

S/C=3 (eq: 500°C); high flow pH_2(ret) $<$ pH_2(perm)
Long term behaviour under SMR condition

- Membrane performance (CH$_4$-leak rate or cross-over):
 CH$_4$-leak rate expressed in permeance
Leak rate behavior pre test vs. post test

- **N₂-leak rate characterisation pretest to posttest:**
 - Leak rate: \(J/dP = \alpha + \beta \cdot P_{av} \)
 - Y-axis intersection: Knudsen-flow = \(\alpha \cdot dP \)
 - Slope: Viscous flow = \(\beta \cdot P_{av} \cdot dP \)

Thin Pd-layer

\[
y = 0.1261x + 6.4615
\]

Thick Pd-layer

\[
y = 0.0255x + 0.8835
\]

Mainly increase in Knudsen flow \(\rightarrow \) increase in nano-sized pores
Post test leak characterisation Comparison \(\text{N}_2/\text{He}-\text{leak flow} \):

<table>
<thead>
<tr>
<th>Thin Pd-layer</th>
<th>Pressure (barg)</th>
<th>(\text{He}) (ml.min)</th>
<th>(\text{N}_2) (ml.min)</th>
<th>Ratio (\text{He}/\text{N}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>84</td>
<td>36</td>
<td>2.36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thick Pd-layer</th>
<th>Pressure (barg)</th>
<th>(\text{He}) (ml.min)</th>
<th>(\text{N}_2) (ml.min)</th>
<th>Ratio (\text{He}/\text{N}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>14.5</td>
<td>5.5</td>
<td>2.63</td>
</tr>
</tbody>
</table>

\((\text{Mw}_\text{N}_2/\text{Mw}_\text{He})^{0.5}\) = 2.65

Knudsen diffusion is dominant
Leak rate behavior pre test vs. post test

- Post test leak characterisation rising water test:

 - Rising water test: Leak is almost evenly distributed over membrane length
Leak rate behavior pre test vs. post test

- **Post test morphology characterisation:**

 - Thin Pd-layer (around 2 micron grains)
 - Thick Pd-layer (around 3-7 micron grains)

 Resulting grain size is in same order as Pd-layer thickness
Leak rate behavior pre test vs. post test

- **Possible leakage mechanism:**
 Straightening out of grain boundary from one side to the other

Cross sectional schematic impression of morphology

- Grain boundary forms a short circuit for gas cross over from one side to the other
Long term behaviour under SMR condition

• Overview:

Pre test

Long term test

Post test

Knudsen behavior

• Conclusions:
 - Thick Pd-membrane → Initial low leakage level → longer life time
 - Increase in leakage due to increase in amount nano-scale defects (Knudsen)
 - Main question: origin of Knudsen defects (Layer thickness, plating procedure, support properties, stress state, grain growth...)

Thick Pd-layer

Thin Pd-layer

H₂/N₂=66000

y = 0.0128x + 0.1024

Thick Pd-layer

y = 0.0255x + 0.8835

H₂/N₂=11000

\[\text{H}_2/\text{N}_2 = 66000 \]

\[\text{H}_2/\text{N}_2 = 11000 \]
Acknowledgement

The research leading to these results has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration, under Grant Agreement n° 263007 (acronym CARENA) and from the Dutch Institute of Sustainable Process Technology.