

CARENA WP3: Valorization of CO₂ to MeOH and DMC

Gerhard Remmers - AkzoNobel

Introduction

AkzoNobel incentive for CARENA:

- Interest in new affordable processes for green
 Methanol and green Di Methyl Carbonate (DMC)
- Open innovation driver
- Catalytic membrane reactors identified as high risk high reward option

EU FP7 programme:

- Working with excellent EU expertise on catalysts, membranes and process design
- Substantial technical and financial leverage realized
- Expected low Probability of Success acceptable

Incentives WP 3

Valorization of CO₂:

Methanol synthesis:

$$CO_{2(g)} + 3H_{2(g)} \leftrightarrows CH_3OH + H_2O$$

• DMC synthesis:

$$CO_{2(g)} + 2MeOH \leftrightarrows DMC + H_2O$$

Selective removal of H₂O/products through a membrane reactor

Incentives WP 3

Valorization of CO₂:

Methanol synthesis:

$$CO_{2(g)} + 3H_{2(g)} \leftrightarrows CH_3OH + H_2O$$

• DMC synthesis:

$$CO_{2(g)} + 2MeOH \leftrightarrows DMC + H_2O$$

 Selective removal of H₂O/products through a membrane reactor

Commonalities:

- Equilibrium reactions
 - → need for high pressure
- Need for catalysts
- Water produced as coproduct
- Reaction T:

Challenges for Methanol process

Methanol synthesis: non-membrane process

Total electricity usage:

700 kWh/t MeOH

Total steam consumption:

2-3 t steam/t MeOH

Methanol synthesis: non-membrane process

Total electricity usage:

Total steam consumption:

700 kWh/t MeOH

2-3 t steam/t MeOH

Potential economic gain of membrane process

- Reduction in investment costs due to removal of recycle loop: one compressor and one heat exchanger
- Reduction in energy consumption of compressor(s)

Methanol

• Methanol: Mismatch between operating window of membrane and reaction

Challenges for DMC process

DMC synthesis

Non-membrane process

Membrane process

- Non-membrane process for DMC synthesis not feasible due to large recycles
- Membrane process requires a membrane with a large selectivity of H_2O over methanol: >50

Processing options for DMC production

Options:

- R&S in same unit
- R&S in same unit and cat on membrane (most likely)

Required operating window for DMC production

Issue:

• DMC equilibrium conversion is only around 1%!

Workpackage 3

Objectives

- Catalyst for hydrogenation of CO₂ to MeOH
- More active DMC catalyst
- Hydrothermally stable membranes for selective removal of water/ products and retention of gases
- Labscale demo unit MeOH/DMC membrane process
- First economic evaluation

Model

Catalytic membrane reactor

(CMR)

Catalyst Membrane Ε (H_2O) Boundary

layer

Inert membrane reactor (IMR)

Theory

Model

Reaction

$$2A + B \rightarrow E + H_2O$$

- Bulk membrane reactor: CSTR
- Mass transport: Maxwell Stefan

$$\Delta x_i = \sum_{i \neq j} \frac{\left(\bar{x}_j N_i - \bar{x}_i N_j\right)}{k_{bl} \bar{c}}$$

- Only H₂O permeates through the membrane
- Only mass transfer limitations in boundary layer and membrane

Results

Conclusions

- Process and material parameters have a strong influence on results
- Selection membrane reactor depends on equilibrium

• Low K_{ea} CMR

• Intermediate K_{eq} CMR

• High K_{eq} IMR

- Exact position of maximum depends on
 - k_{bl} •
 - k_f A/V
 - P_{H2O}

Membranes

Clean Membrane

Coated Membrane

Pictures courtesy of Johnson Matthey, 2015

State of the art test setup at the UT

Picture courtesy of the UT

IPR + PhD's

- 3 patent applications
- 8 publications

- PhD. Cécile Daniel, CNRS-IRCE Lyon
- PhD. Harro Mengers, University of Twente
- PhD. Michiel Raaijmakers, UT → AkzoNobel
- PhD. Nanyi Wang, Leibnitz University Hannover

Highlight summary

- New catalysts produced and tested for hydrogenation of CO₂ to MeOH
- New DMC catalyst developed and tested
- Development of hydrothermally stable membranes for selective removal of water/products and retention of gases at <u>high</u> temperature made good progress
- Two new state of art testing facilities for membranes realized and in operation
- Economic evaluation almost finalized

Many thanks for your attention!